The ability to predict histological response from MR parameters: lessons learned from phase 2 trials

Michael S. Middleton, MD PhD

msm@ucsd.edu

UCSD Department of Radiology, San Diego, CA Liver Imaging Group

July 11, 2019 Session 4, Talk #2 4:15 - 4:30 PM

Disclosures

- **Consultant:** Arrowhead, Kowa, Median, Novo Nordisk
- **Stockholder:** General Electric, Pfizer
- Lab services agreements through UCSD (current and prior):

Alexion	Gilead	Roche
AstraZeneca	Guerbet	Sanofi
Bristol-Myers Squibb	Intercept	Shire
Celgene	lsis	Synageva
Enanta	Janssen	Takeda
Galmed	NuSirt	
Genzyme	Pfizer	

Background

- UCSD Liver Imaging Group: development, validation, and implementation of quantitative imaging biomarkers in clinical trials
- NASH-CRN: FLINT and CyNCh Trials
- **QIBA:** PDFF and MRE committees
- Academic Research Organization (ARO):
 - started our ARO at UCSD in 2008
 - 32 starting, ongoing, or completed drug-development clinical trials to date
 - MRI-PDFF, MRS-PDFF, MRE liver stiffness
 - > 5,000 imaging exams evaluated to date at over 300 sites worldwide

Rationale for <u>PDFF</u> as biomarker of <u>liver fat</u>

Accuracy

- MRI <u>accurate</u> compared to <u>MRS</u> as reference-standard¹⁻⁵
- MRI <u>accurate</u> compared to <u>histology</u> as reference-standard^{6,7}

Precision

MRI <u>precise⁸⁻¹¹</u> (repeatability, reproducibility)

Meta-analysis

In an analysis of 23 studies¹²:

"Excellent linearity, bias, and precision across different field strengths, imager manufacturers, and reconstruction methods"

- 1 Liu et al, Magn Reson Med 2007; 58:354
- 2 Haufe et al, JMRI 2017; 1641
- 3 Hernando et al, Magn Reson Med 2017; 77:1516
- **4** Heba et al, *JMRI* **2016**; 43:398
- 5 Zand et al, JMRI 2015; 42:1223
- 6 Middleton et al, Gastroenterology 2017; 153:753

- 7 Middleton et al, Hepatology 2018; 67:858
- 8 Negrete et al, JMRI 2014; 39:1265
- 9 Kang et al, JMRI 2011; 34:928
- 10- Mashhood et al, JMRI 2013; 37:1359
- 11 Artz et al, JMRI 2015; 42:811
- 12 Yokoo et al, Radiology 2018; 286:486

Rationale for MRE as biomarker of liver stiffness

- Liver fibrosis increases shear stiffness and other parameters¹³⁻¹⁵
- <u>Accurate</u> using histologic steatosis grade as reference standard¹⁶
- Repeatable and reproducible¹⁷⁻²⁰, predicts NASH²¹ and advanced fibrosis²²
- Precision in large meta-analysis study supports the claim²³: "A measured change in hepatic stiffness of 22% or greater, at the same site and with use of the same equipment and acquisition sequence, indicates that a true change in stiffness has occurred with 95% confidence

- 13 Singh et al, Clin Gastroenterol Hepatol 2015; 13:440
- 14 Asbach et al, *Radiology* 2010; 257:80
- 15 Huwart et al, Radiology 2007; 245:456
- 16 Morisaka et al, JMRI 2017; 47:1268
- 17 Zhang et al, JMRI 2016; 43:704
- 18 Shi et al, *JMRI* 2014; 32:665

- 19 Serai et al, Abdom Imaging 2015; 40:789
- 20 Lee et al, JMRI 2014; 39:326
- 21 Chen et al, Radiology 2011; 259:749
- 22 Loomba et al, Hepatology 2014; 60:1920
- 23 Serai et al, Radiology 2017; 285:92

Long-term goal - <u>full</u> biomarker validation

- All quantitative imaging biomarkers being developed at this time are as yet only partially validated
- Full validation for given contexts of use requires acceptance by regulators as endpoint surrogates in drug development clinical trials and clinical care
- Close involvement of and cooperation between regulatory agencies, academia, and industry is needed for this to happen
- The NIMBLE and LITMUS trials, both in their planning/start-up phases, will contribute significantly to this effort
- Adequate accuracy is important, but probably adequate precision is more important

Technical lessons learned from drug trials

- Current MRI-PDFF analyzability across all imaging sites, MR scanners, and clinical trials currently is at ~ 99%
- Current MRE analyzability across all imaging sites, MR scanners, and clinical trials currently is at ~ 97-98%
- These rates of successful analysis depend on (all sine qua non status):
 - Rigorous prior biomarker (preliminary) validation
 - Central site qualification and training
 - Central intake QC and image analysis
 - Real-time case-by-case feedback to clinical sites
 - Strong support by CROs

Quantitative metrics of analyzability

 Just as <u>validation</u> requires quantitative imaging biomarkers to demonstrate appropriate accuracy and precision for defined contexts of use,

So also the <u>translation</u> of those biomarkers to clinical trials and eventually to clinical care requires development of **quantitative metrics of analyzability** so that users of that data can be reassured that the promised and necessary accuracy and precision are being delivered.

- Two such metrics of analyzability that are under development are:
 - a cutoff r² fitting parameter for PDFF that indicates how well multi-echo data is fitted by triglyceride-model analysis algorithms; 0.97 has been reported to be a useful value for this cutoff
 - a *minimum MRE ROI area* of 500-700 pixels across 4 slices through the widest part of the liver as a cutoff for acceptable liver stiffness results

NASH

Meeting

How much change in <u>PDFF</u> is clinically meaningful?

- In a post-study secondary analysis by Patel et al (2016) of 36 patients from the MOZART study (ezetimibe), the 10 who showed histologic response of ≥ 2 point decrease in NAS had a *relative* MRI-PDFF decrease of 29.3% (-4.1% PDFF compared to -0.6% PDFF).
- On the basis of that finding, they suggested that, pending external independent validation by other groups, these results could be incorporated into designing future clinical trials.
- Since NAS includes PDFF, however, a large drop in PDFF can drive a large drop in NAS.
 Adding a requirement for NASH resolution would probably help.
- Validation of this finding should be in a prospective study with a placebo group.

How much change in <u>MRE</u> is clinically meaningful?

In a 2017 poster²⁴ for the GS-4997 study of selonsertib entitled "Longitudinal changes in liver stiffness by magnetic resonance elastography (MRE), liver fibrosis, and serum markers of fibrosis in a multi-center clinical trial in nonalcoholic steatohepatitis (NASH)", a 15% reduction in MRE liver stiffness is suggested as being a clinically meaningful response by the following statement:

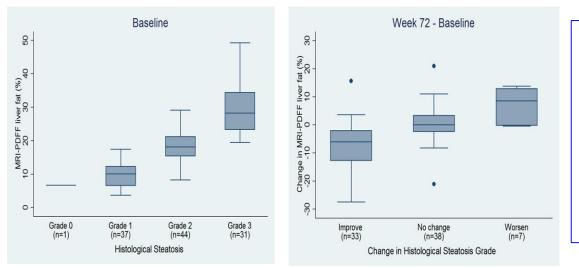
"Relative reductions of liver stiffness by MRE \geq 15% at W24 were significantly associated with reductions in serum markers of fibrosis, high sensitivity C-reactive protein (hsCRP), and HbA1c."

- This poster is referenced in a review by Connolly et al (2018)²⁵
- This suggestion also would probably benefit from prospective validation in external independent studies that include a placebo arm.

24 - Loomba et al, J Hepatology (2017); 66:S543
25 - Connolly et al, J Clin Translat Hepatol (2018); 6:264

Phase 2 clinical trials

- Reviewed 25 published papers reporting Phase 2 clinical trials:
 - 16 assessed <u>MRI</u>-PDFF
 - 8 assessed <u>MRS</u>-PDFF
 - 5 assessed MRI-PDFF and MRE
 - 1 assessed MRE alone
- Lessons learned:
 - <u>MRI</u>-PDFF vs. <u>MRS</u>-PDFF
 - Discriminatory PDFF cutoffs for histologic steatosis grades
 - Discriminatory MRE cutoffs for histologic fibrosis stages
 - Longitudinal change of PDFF with pathology
 - Longitudinal change of MRE liver stiffness with histology


MRI-PDFF vs. MRS-PDFF

- The selected MRS papers were limited in one way or another:
 - 5/8 studies were single center
 - 6/8 studies used the PRESS sequence (not optimal; STEAM is better)
 - only 2/8 evaluated a drug (the others evaluated lifestyle, exercise, diet, etc.)
 - mostly smaller papers than the ones reporting major clinical trials
- Because of these and other factors (mainly, increased difficulty implementing MRS in large multi-center clinical trials), using MRI-PDFF is strongly recommended over MRS-PDFF in drug development clinical trials

PDFF histology cutoffs

 In the FLINT Trial, 113 adults with NASH at 8 sites were enrolled, dosed with obeticholic acid vs. placebo, and scanned at baseline and 72 weeks. Histology was compared to PDFF, and cutoffs were determined to distinguish histology grades⁶.

At baseline for FLINT Trial:

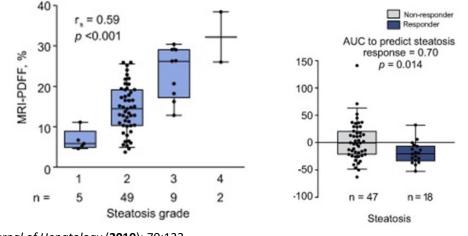
16.3% PDFF distinguished grades 0,1 from 2,3 at 90% specificity

21.7% PDFF distinguished grades 0,1,2 from 3 at 90% specificity

(Similar values were obtained for CyNCh Trial⁷: **17.5%** and **23.3%** PDFF, respectively.)

Paris NASH Meeting

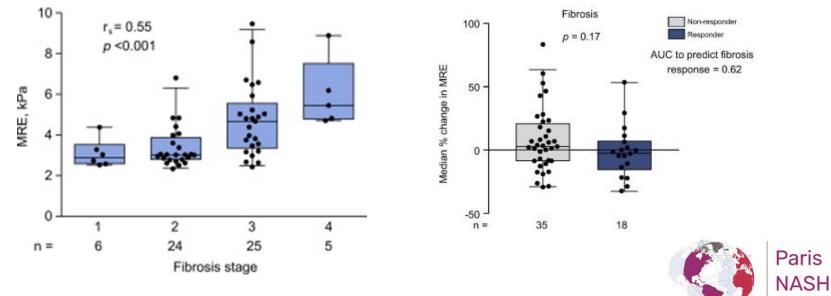
6 - Middleton et al, *Gastroenterology* **2017**; 153:753 7 - Middleton et al, *Hepatology* **2018**; 67:858


MRE histology cutoffs

- Not a Phase 2 clinical trial, but to address this question, Singh et al (2016) reported the following cutoffs for pooled data from 9 carefully selected studies that used similar MRE technique²⁶:
 - Stage ≥1 fibrosis cutoff reported as 2.88 kPa
 - Stage ≥2 fibrosis cutoff reported as **3.54** kPa
 - Stage ≥3 fibrosis cutoff reported as **3.77** kPa
 - Stage 4 fibrosis cutoff reported as 4.09 kPa
- The best cutoff at each level will depend, amongst other things, on the context of use to which it is intended to be used.
- Take-home message for PDFF and MRE: cutoff values exist that can be used to inform clinical trial design.

Longitudinal change of PDFF with histology

- Phase 2 multi-center trial (GS-US-384-1497)²⁷, NASH and stage 2-3 fibrosis, MRI-PDFF and MRE liver stiffness evaluated compared to biopsy at baseline and at week 24 of treatment with selonsertib (selective inhibitor of apoptosis signal-regulating kinase 1.
- Steatosis grade was seen to correlate with MRI-PDFF (left), and histologic steatosis responders were seen to show decreases in MRI-PDFF (right):



Paris NASH Meeting

27 - Jayakumar et al, Journal of Hepatology (2019); 70:133

Longitudinal change of MRE liver stiffness with histology

- Same study (Jayakumar et al, 2019)²⁷
- Fibrosis stage was seen to correlate with MRE liver stiffness (left), and histologic fibrosis responders were seen to show decreases in MRE liver stiffness (right):

Meeting

International Think Tan

Opportunities and conclusions

- Drug development clinical trials, in addition to helping develop new drugs, also provide invaluable opportunities to:
 - test and validate quantitative imaging biomarkers
 - create, test, and validate artificial intelligence applications
 - advance medical science when those biomarkers are adequately validated
- The upcoming NIMBLE and LITMUS Trials will allow several selected mature imaging (MRI and ultrasound) NASH-related biomarkers to be rigorously tested with the aim of being found acceptable for use in drug development clinical trials in Europe and the United States

